Aid and Conflict at the Local Level

The Role of Traditional and Emerging Donors

Kai Gehringa, Lennart Kaplanb,c and Melvin H. L. Wongd

aUniversity of Zurich bUniversity of Göttingen cUniversity of Heidelberg dUniversity of Hannover

IPES Conference

November 18, 2017 - University of Texas at Austin
Motivation

The Aid Conflict Nexus:

- USD 143 billion spent in 2016 on development aid
- China as a potentially "rogue donor" (Naím, 2007) is intensifying its donations to Africa
- Global prevalence of conflict: Syria, Afghanistan, Yemen, Philippines, Lybia...
- About 40% of global aid go to fragile and conflict affected states
- Recent research leaning towards a conflict enhancing effect of aid (Nunn and Qian, 2014; Crost et al., 2014)
Contribution

Research so far:
- Focus on US food aid (Nunn and Qian, 2014).
- Focus on few selected countries (Sexton, 2016; Child, 2016).
- Micro theories are examined with aggregated macro data (Collier and Hoeffler, 2004).

Our contribution is:
- ...analyzing the relationship between development aid and conflict at the local level.
- ...distinguishing between traditional and emerging donors.
- ...examining different mechanisms linking aid and conflict.
The spatial dimension

(a) Same Region

(b) Distant Region

- Conflict
- Aid
The spatial dimension

(a) Neighboring Region 1

(b) Neighboring Region 2

- Conflict
- Aid
Main Geospatial Datasets

- AidData:
 - World Bank IBRD-IDA, Version 1.4.2 (Strandow et al., 2011)
 - Chinese Official Finance to Africa (Strange et al., 2017)

- UCDP Global Event Database (GED) on organized violence from Sundberg and Melander (2013)
 - Used to construct low scale (more than 5 BRD) & medium scale (more than 25 BRD) binary conflict indicator

- Control variables from PRIO Grid (Tollefsen, Strand & Buhaug, 2012)
World Bank’s IDA disbursements globally

Note: Yearly means of gross IDA disbursements to ADM1 regions 1995-2012.
Chinese ODA-like flows to Africa

Note: Yearly means of gross Chinese ODA-like flows to ADM1 regions 2000-12.
Empirical Approach

\[C_{ir,t} = \beta_1 A_{ir,t-1} + X_{ir,t-1} \beta_2 + \beta_3 \gamma_t + \beta_4 \lambda_r + \epsilon_{ir,t}, \]

where:
- \(C_{ir,t} \) is a binary conflict indicator,
- \(A_{ir,t-1} \) is the log of aid disbursements,
- \(X_{ir,t-1} \) is a vector of lagged control variables,
- \(\gamma_{it} \) refers to time and \(\lambda_r \) to regional fixed effects,
- further fixed effects & trends are added for robustness.
- Geo-localized data allows to control for several omitted variables via fixed effects and trends.
Results OLS - Aid & Conflict (ADM1 level)

Panel A: World Bank

<table>
<thead>
<tr>
<th></th>
<th>(\beta / se)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\ln(WBAid_{t-1}))</td>
<td>-0.1201***</td>
<td>-0.1191**</td>
<td>-0.0801</td>
<td>-0.0873</td>
<td>-0.0476</td>
<td>-0.0467</td>
</tr>
<tr>
<td></td>
<td>(0.0440)</td>
<td>(0.0497)</td>
<td>(0.0498)</td>
<td>(0.0535)</td>
<td>(0.0437)</td>
<td>(0.4656)</td>
</tr>
<tr>
<td>N:</td>
<td>40,432</td>
<td>40,432</td>
<td>40,432</td>
<td>40,432</td>
<td>40,432</td>
<td>40,432</td>
</tr>
</tbody>
</table>

Panel B: China

<table>
<thead>
<tr>
<th></th>
<th>(\beta / se)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\ln(ChineseAid_{t-2}))</td>
<td>-0.1027</td>
<td>-0.0783</td>
<td>-0.0928</td>
<td>-0.0966</td>
<td>-0.0444</td>
<td>-0.0468</td>
</tr>
<tr>
<td></td>
<td>(0.0818)</td>
<td>(0.0995)</td>
<td>(0.1146)</td>
<td>(0.1119)</td>
<td>(0.1303)</td>
<td>(0.1302)</td>
</tr>
<tr>
<td>N:</td>
<td>5,698</td>
<td>5,698</td>
<td>5,698</td>
<td>5,698</td>
<td>5,698</td>
<td>5,698</td>
</tr>
</tbody>
</table>

- **Exogeneous Controls**: No, Yes
- **Exogeneous Controls*Time**: No, Yes
- **Linear Regional Trends**: No, Yes
- **Lagged Endogeneous Controls**: No, Yes
- **Country-Year FE**: No, Yes

All regressions include Year & Region FE & country level time trends. Multi-way clustered standard errors by country-year and region in columns.

* \(p < 0.05\), ** \(p < 0.01\), *** \(p < 0.001\).
Instrumental Variable

- Difference-in-difference idea:
 Subnational regions are differentially affected by exogenous changes in donor’s overall budget (1st stage)

- Main identifying assumption:
 Change in overall funding position is not driven by conflict in one specific subnational recipient region

- IDA’s funding position:
 - Financial position over Bank’s undisbursed commitments (Dreher et al., 2017)

- Chinese steel production:
 - Chinese aid as a tool to distribute oversupply in steel production (Dreher et al., 2016)
Funding Positions and Battle Related Deaths

(a) World Bank

(b) China
IV - 2nd stage - Aid & Conflict (ADM1 level)

<table>
<thead>
<tr>
<th>Panel A: World Bank</th>
<th>(\ln(\text{WBAid}_{t-1}))</th>
<th>(\beta/\text{se})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.0948</td>
<td>0.0343</td>
<td>-0.1257</td>
<td>-0.1396</td>
<td>0.0461</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.2027)</td>
<td>(0.2021)</td>
<td>(0.2017)</td>
<td>(0.2014)</td>
<td>(0.2009)</td>
</tr>
<tr>
<td>(N)</td>
<td></td>
<td>40,404</td>
<td>40,432</td>
<td>40,432</td>
<td>40,432</td>
<td>40,432</td>
</tr>
<tr>
<td>Kleibergen-Paap underidentification test p-value</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>Kleibergen-Paap weak identification F-statistic</td>
<td>233.945</td>
<td>250.901</td>
<td>174.536</td>
<td>178.490</td>
<td>412.581</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel B: China</th>
<th>(\ln(\text{ChineseAid}_{t-2}))</th>
<th>(\beta/\text{se})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>-1.2676</td>
<td>-0.5080</td>
<td>-0.5348</td>
<td>-0.3717</td>
<td>0.3306</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1.4386)</td>
<td>(1.3308)</td>
<td>(1.4206)</td>
<td>(1.3679)</td>
<td>(0.3202)</td>
</tr>
<tr>
<td>(N)</td>
<td></td>
<td>5,190</td>
<td>5,180</td>
<td>5,180</td>
<td>5,180</td>
<td>5,180</td>
</tr>
<tr>
<td>Kleibergen-Paap underidentification test p-value</td>
<td>0.001</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
</tr>
</tbody>
</table>

Exogenous Controls	No	Yes	Yes	Yes	Yes	Yes
Exogenous Controls*Time	No	Yes	Yes	Yes	Yes	Yes
Lagged Endogeneous Controls	No	No	No	Yes	Yes	Yes
Country-Year FE	No	No	Yes	Yes	Yes	Yes
Linear Regional Trends	No	No	No	Yes	Yes	Yes

All regressions include Year & Region FE & country level time trends. Multi-way clustered standard errors by country-year and region in columns.
* \(p < 0.05 \), ** \(p < 0.01 \), *** \(p < 0.001 \).
Conclusion & Outlook

Conclusion

- Baseline results suggest no relationship between average aid and overall conflict in the same region
- Robust to: standard error adjustment, choice of administrative units, choice of conflict threshold
Conclusion & Outlook

Conclusion

- Baseline results suggest no relationship between average aid and overall conflict in the same region
- Robust to: standard error adjustment, choice of administrative units, choice of conflict threshold

Outlook

- Spatial inequality in disbursements
- Consider ethnic grievances (Alesina et al., 2016)
- Different types of aid
- Consider conflict actors more specifically
Outlook: Aid Inequality (ADM1 level)

<table>
<thead>
<tr>
<th>Panel A: World Bank</th>
<th>β/se</th>
<th>β/se</th>
<th>β/se</th>
<th>β/se</th>
<th>β/se</th>
<th>β/se</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\ln(WBAid_{t-1})$</td>
<td>0.0123</td>
<td>0.0422</td>
<td>0.0547</td>
<td>0.0558</td>
<td>-0.0266</td>
<td>-0.0443</td>
</tr>
<tr>
<td></td>
<td>(0.0554)</td>
<td>(0.0621)</td>
<td>(0.0768)</td>
<td>(0.0808)</td>
<td>(0.0909)</td>
<td>(0.0875)</td>
</tr>
<tr>
<td>$\ln(WBAid_{t-1})_{adj}$</td>
<td>-1.0201**</td>
<td>-0.9009*</td>
<td>-0.8432</td>
<td>-0.8452</td>
<td>-1.0808*</td>
<td>-1.1185*</td>
</tr>
<tr>
<td></td>
<td>(0.4258)</td>
<td>(0.4784)</td>
<td>(0.6060)</td>
<td>(0.6133)</td>
<td>(0.6305)</td>
<td>(0.6386)</td>
</tr>
<tr>
<td>$\ln(WBAid_{t-1})_{ratio}$</td>
<td>0.0096</td>
<td>0.0165</td>
<td>0.0122</td>
<td>0.0071</td>
<td>0.0015</td>
<td>-0.0010</td>
</tr>
<tr>
<td></td>
<td>(0.0243)</td>
<td>(0.0237)</td>
<td>(0.0264)</td>
<td>(0.0267)</td>
<td>(0.0184)</td>
<td>(0.0203)</td>
</tr>
</tbody>
</table>

Exogeneous Controls: No Yes Yes Yes Yes Yes
Exogeneous*Time Controls: No Yes Yes Yes Yes Yes
Linear Regional Trends: No No Yes Yes Yes Yes
Lagged Endogeneous Controls: No No No Yes No Yes
Country-Year FE: No No No No Yes Yes

All regressions include Year & Region FE & country level time trends. Multi-way clustered standard errors by country-year and region in columns.

* $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$.
Thank you for your attention and your comments.

Aid and Conflict at the local level

Kai Gehring, Lennart Kaplan and Melvin Wong

Outlook: Actors - (ADM1 level)

<table>
<thead>
<tr>
<th></th>
<th>World Bank Aid b/se</th>
<th>World Bank Aid b/se</th>
<th>Chinese Aid b/se</th>
<th>Chinese Aid b/se</th>
</tr>
</thead>
<tbody>
<tr>
<td>All_Gov</td>
<td>0.0525 (0.0886)</td>
<td>-0.0535 (0.0781)</td>
<td>-0.0485 (0.1491)</td>
<td>0.0575 (0.1630)</td>
</tr>
<tr>
<td>1side_Gov</td>
<td>-0.0394 (0.0464)</td>
<td>-0.0599 (0.5001)</td>
<td>-0.1206 (0.0842)</td>
<td>-0.0810 (0.1092)</td>
</tr>
<tr>
<td>All_NonState</td>
<td>0.0419 (0.1196)</td>
<td>-0.0497 (0.1176)</td>
<td>0.0473 (0.1970)</td>
<td>0.3090 (0.2058)</td>
</tr>
<tr>
<td>NonState vs NonState</td>
<td>0.0584 (0.0605)</td>
<td>0.0597 (0.0548)</td>
<td>-0.0329 (0.1210)</td>
<td>0.1601 (0.1327)</td>
</tr>
<tr>
<td>1side_NonState</td>
<td>-0.1623** (0.0779)</td>
<td>-0.0346 (0.0963)</td>
<td>-0.0928 (0.0781)</td>
<td>-0.0660 (0.0835)</td>
</tr>
<tr>
<td>Country-Year FE</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Kleibergeren-Paap underidentification test p-value</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Kleibergeren-Paap weak identification F-statistic</td>
<td>157.096</td>
<td>178.913</td>
<td>57.858</td>
<td>70.100</td>
</tr>
</tbody>
</table>

All regressions include Year & Region FE, country level time trends, regional time trends and control variables. Multi-way clustered standard errors by country-year and region in columns.

* $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$.

Motivation

Data and Method

Empirical Strategy and Results

References
Pre Trends - Aid & Conflict

Panel A: World Bank:

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\ln(WBAid_{t+1})$</td>
<td>-0.0757^*</td>
<td>-0.0779^*</td>
<td>0.0001</td>
<td>0.0012</td>
<td>0.0475</td>
</tr>
<tr>
<td></td>
<td>(0.0393)</td>
<td>(0.0409)</td>
<td>(0.0426)</td>
<td>(0.0471)</td>
<td>(0.0426)</td>
</tr>
</tbody>
</table>

Panel B: China

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\ln(ChineseAid_{t+1})$</td>
<td>0.0195</td>
<td>0.0074</td>
<td>0.0079</td>
<td>0.0101</td>
<td>0.0364</td>
</tr>
<tr>
<td></td>
<td>(0.1039)</td>
<td>(0.1278)</td>
<td>(0.1210)</td>
<td>(0.1303)</td>
<td>(0.1164)</td>
</tr>
</tbody>
</table>

- Exogeneous Controls: No, Yes, Yes, Yes, Yes
- Exogeneous Controls*Time: No, Yes, Yes, Yes, Yes
- Linear Regional Trends: No, No, No, No, Yes
- Lagged Endogeneous Controls: No, No, No, Yes, Yes
- Country-Year FE: No, No, Yes, Yes, Yes

All regressions include Year & Region FE & country level time trends. Multi-way clustered standard errors by country-year and region in columns.

* $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$.
IV - 1st stages

\[A_{ir,t-1} = \beta_1 Position_{i,t-1} \times Prob_{ir,t-2} + X_{ir,t-1} \beta_2 + \gamma_{t-1} + \lambda_r + \epsilon_{ir,t-1}, \]

- Potentially endogenous probability is captured in second stage by \(Prob_{ir,t-2} \)
- Interaction of endog. variable with an exog. variable can be interpreted as exogenous (Bun et al., 2014; Nizalova and Murtazashvili, 2016)

Go back to main part.
IV - 1st stage - IDA disbursements (ADM1 level)
IV - 1st stage - Chinese ODA-like flows (ADM1 level)
Reduced Form - IDA Position
Reduced Form - Chinese Steel